
作者:〔美 〕乌黛·卡马特(Uday Kamath), 〔美 〕克里希纳·肖佩拉(Krishna Choppella)
分类:软件开发与应用
字数:178602字
ISBM:9787111609193
价格:¥45.00
出版社:机械工业出版社/2018-09
提供方:华章数媒
提供方简介:把业界大师收入囊中,将图书馆带在身上。 经济管理、金融投资、心理励志、计算机网络 http://www.hzmedia.com.cn/
图书简介:本书涵盖了机器学习中的经典技术,如分类、聚类、降维、异常检测、半监督学习和主动学习。同时介绍了近期高深的主题,包括流数据学习、深度学习,以及大数据学习的挑战。每一章指定一个主题,包括对于实例研究,介绍前沿的基于Java的工具和软件,以及完整的知识发现周期:数据采集、实验设计、建模、结果及评估。每一章都是独立的,提供了很大的使用灵活性。附带的网站提供了源码和数据。对于学生和数据分析从业员来说,可以直接用刚学到的方法进行实验,或者通过将这些方法应用到真实环境中,加深对它们的理解。乌黛·卡马特(Uday Kamath)博士是BAE系统应用智能公司的首席数据科学家,专门研究可扩展机器学习,并在反洗钱AML、金融犯罪欺诈检验、网络空间安全和生物信息学领域拥有20年的研究经验。Kamath博士负责BAE系统应用智能公司AI部门核心产品的研究分析,这些产品涉及的领域有行为科学、社交网络和大数据机器学习方面。在Kenneth De Jong博士的指导下,他获得了乔治梅森大学的博士学位,他的论文研究聚焦于大数据和自动化序列挖掘的机器学习领域。克里希纳·肖佩拉(Krishna Choppella)在BAE系统应用智能公司的角色是作为解决方案架构师,构建工具和客户解决方案。他有20年的Java编程经验,主要兴趣是数据科学、函数编程和分布式计算。